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The contact process and oriented percolation are expected to exhibit the same
critical behavior in any dimension. Above their upper critical dimension dc, they
exhibit the same critical behavior as the branching process. Assuming existence
of the critical exponents, we prove a pair of hyperscaling inequalities which,
together with the results of refs. 16 and 18, implies dc=4.

KEY WORDS: Contact process; oriented percolation; critical exponent; hyper-
scaling inequality; upper critical dimension.

1. INTRODUCTION

The contact process (CP) was introduced by Harris (12) as a model of spread
of an infectious disease. In this paper every individual is supposed to be
either healthy or infected and to reside in the d-dimensional integer lattice Zd,
but not to move around in Zd. It is known that this model exhibits a phase
transition and critical behavior (see Section 3).

By the graphical representation (see Section 2), CP in Zd is considered
as oriented percolation (OP) in Zd×R+ and is believed to exhibit the same
critical behavior as OP in Zd×Z+.

The main ingredient which makes analyses for CP and OP difficult is
interaction between distinct sites; offspring of one site is not independent of
that of another site. The branching process is a model where offspring are
independent each other, and we can easily solve its problem. We refer
to the critical behavior of the branching process as the mean-field (MF)
behavior.



In high dimensions, the interaction among distinct sites is expected to
be weak. It has been proved (16, 18) that the nearest-neighbor CP and OP with
d ± 4 and sufficiently spread-out CP and OP with d > 4, defined in Sec-
tion 2, satisfy a diagrammatic condition, called the triangle condition, (2–4)

which implies that both models exhibit the MF behavior. Under the uni-
versality hypothesis, the critical behavior of the nearest-neighbor CP and
OP is believed to be identical to that of the spread-out CP and OP in any
dimension, and thus the value of the upper critical dimension dc is expected
to be at most 4: any spatially symmetric finite-range CP and OP exhibit the
MF behavior for any d > 4.

In this paper we derive a pair of hyperscaling inequalities for CP and
OP (Corollary 4.2) which implies dc \ 4. These inequalities relate the spatial
dimension d to the critical exponents which indicate singular behavior of
observables in the vicinity of the critical point (see Section 3). The inequalities
are proved by assuming existence of the critical exponents. The proof is based
on argument similar to that in refs. 19 and 20 for unoriented percolation.

We organize the rest of this paper as follows. In Section 2 we define
the nearest-neighbor and spread-out CP and OP. In Section 3 we present
several results obtained so far about the phase transition and critical
behavior of the models defined in Section 2. In Section 4 we present the
pair of hyperscaling inequalities. Finally in Section 5 we prove the hyper-
scaling inequalities by assuming existence of the critical exponents intro-
duced in Section 3.

2. MODELS

We here define the models to be discussed. Let W … Zd denote a fixed
set of sites which is symmetric with respect to the symmetries of the lattice.
We suppose that its cardinality |W| is finite. For x ¥ Zd, we define D(x) to
be 1/|W| if x ¥ W, and 0 otherwise.

Oriented Percolation (OP). We think of Zd×Z+ as space-time.
A bond is defined to be an ordered pair [(x, t), (y, t+1)P of sites in Zd×Z+.
For any t ¥ Z+, a bond [(x, t), (y, t+1)P is ether open or closed with
probability lD(y−x) and 1−lD(y−x) respectively, independently of the
other bonds, where l ¥ [0, |W|].

A site (x, s) is said to be connected to (y, t) if either (x, s)=(y, t) or
there are t−s open bonds {[(zi−1, s+i−1), (zi, s+i)P} t−si=1 satisfying that
z0=x and zt−s=y; we denote (x, s) Q (y, t) for this event. In particular
we define Ct={x ¥ Zd : (o, 0) Q (x, t)}.
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Contact Process (CP). Let Ct … Zd denote the set of infected indi-
viduals at time t ¥ R+, provided that C0={o}. The dynamical process of Ct
is defined as

˛x ¥ Ct 0 x ¨ Ct+e, with probab. e+o(e),

x ¨ Ct 0 x ¥ Ct+e, with probab. le;y ¥ Ct D(x−y)+o(e),

where l \ 0 and o(e) denotes a function satisfying o(e)/eQ 0 as e a 0.
This model can also be constructed by the graphical representation

(ref. 15 and references therein) as follows: we consider Zd×R+ as space-
time. Along each time line {x}×R+, we place points in the manner of a
Poisson process with intensity 1, independently of the other points. And for
each ordered pair of distinct time lines from {x}×R+ to {y}×R+, we place
bonds {[(x, t), (y, t)P}t \ 0 in the manner of a Poisson process with inten-
sity lD(y−x), independently of the other Poisson processes.

A site (x, s) is said to be connected to (y, t) if either (x, s)=(y, t) or
there is a path in Zd×R+ from (x, s) to (y, t) using the equipped bonds
and time line segments traversed in the increasing time direction without
traversing the equipped points; we denote (x, s) Q (y, t) for this event. The
law of Ct defined above is equivalent to that of {x ¥ Zd : (o, 0) Q (x, t)}.

We refer to the model defined by W={x ¥ Zd : ;i |xi |=1} as the
nearest-neighbor model, and to the model defined by W={x ¥ Zd : 0 <
maxi |xi | [ L} for some L <. as the spread-out model.2 We write Pl for

2 We can consider a more general class as the spread-out model. See refs. 4, 10, and 13 for
example.

the associated probability measure of both models. Although we exclusi-
vely discuss CP, the rest of this paper is also applicable to OP.

3. PHASE TRANSITION AND CRITICAL BEHAVIOR

We here present several results obtained so far about the phase transi-
tion and critical behavior of CP and OP. First we define several quantities
to be discussed. The order parameter h(l) is defined to be Pl(C. ]”),
which is a decreasing limit of ht(l) — Pl(Ct ]”) as t ‘.. We also define
Gt(l)=ht(l)−h(l) and its relaxation time

y(l)=inf{T \ 0 : Gt(l) [ e−t/T, -t \ 0}. (3.1)

And we define the connectivity function fl(x, t)=Pl((o, 0) Q (x, t)) and
the susceptibility q(l)=>.0 dt qt(l) (which is defined to be ;t ¥ Z+

qt(l)
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for OP) with qt(l)=;x fl(x, t). Finally we define the radius of gyration at
time t

tt(l)=3
1
qt(l)

C
x

|x|2 fl(x, t)4
1/2

, where |x|2=C
d

i=1
x2i .

For the nearest-neighbor CP and OP with d \ 1 and for the spread-out
OP with d \ 1 and L \ 1, it has been proved (5, 10) that there exists a critical
point lc ¥ (0,.) (lc ¥ (0, |W|) for OP) such that h(l)=0 when and only
when l [ lc. Therefore Gt(l)=ht(l) when l [ lc. We note that, by the
super-multiplicative property hs+t(l) \ hs(l) ht(l), the relaxation time for
l [ lc satisfies

e−1/y(l)=lim
t ‘.
ht(l)1/t=sup

t > 0
ht(l)1/t. (3.2)

It is known (ref. 15, p. 57) that Gt(l) also decays exponentially as t ‘.
when l > lc.

For the nearest-neighbor CP and OP with d \ 1 and for the spread-out
CP and OP with d \ 1 and L \ 1, it has been proved (1, 2, 4, 6) that q(l) is
finite when l < lc and diverges as l ‘ lc. In fact

q(l) \ (lc −l)−1, -l < lc. (3.3)

It is generally believed that there exists a critical exponent c such that

q(l) % (lc −l)−c, as l ‘ lc. (3.4)

This means that there exist s1(e), s2(e) ¥ (0,.) slowly varying3 as e a 0 such

3 A function s(e) is said to be slowly varying as e a 0 if lime a 0 s(c e)/s(e)=1 for every c > 0.
An example of s(e) is |ln e|.

that for e=lc −l

s1(e) [
q(l)

(lc −l)−c
[ s2(e), (3.5)

holds for any positive e close to 0. The inequality (3.3) implies c \ 1 if the
exponent c exists. Under the triangle condition, (2, 4) it has been proved that
q(l) is bounded from above by a l-independent multiple of (lc −l)−1 for
any l < lc close to lc, and thus c exists and equals 1 for the nearest-neigh-
bor CP and OP and for the spread-out CP and OP with L \ 1. The expo-
nent c as well as the other critical exponents defined below is believed to be
universal: c depends only on the value of d and spatial symmetry of the
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models, but not on whether the model is nearest-neighbor or spread-out.
The dimension-independent value c=1 is called the MF value of c, which is
the critical exponent for the branching process: for the (continuous-time)
branching process, qt(l) is the expected number of sites in Zd where at least
one offspring exists, and satisfies the differential equation

“

“t
qt(l)=(l−1) qt(l), with q0(l)=1.

We can easily solve this to obtain q(l)=(1−l)−1 for l < 1.
It has been proved (16, 18) that the triangle condition holds and thus

c=1 for the nearest-neighbor CP and OP with d ± 4 and for the spread-
out CP and OP with d > 4 and L ± 1. The universality hypothesis stands
behind the belief that any spatially symmetric finite-range CP and OP
exhibit the MF behavior for any d > 4.

The other critical exponents discussed in this paper are defined as
follows.

y(l) % ˛ (lc −l)−z, as l ‘ lc,

(l−lc)−zŒ, as l a lc,
(3.6)

h(l) % (l−lc)b, as l a lc, (3.7)

ht(lc) % t−r, as t ‘., (3.8)

tt(lc) % tn, as t ‘., (3.9)

where the behavior as t ‘. is defined in the same way as (3.5) with e=1/t.
It is believed that z=zŒ holds in any dimension. The MF values of z, zŒ, b
and r are all equal to 1, which are obtained by solving

“

“t
ht(l)=(l−1) ht(l)−lht(l)2, with h0(l)=1.

For the nearest-neighbor CP and OP and for the spread-out CP and OP
with L \ 1, it has been proved that b [ 1 if the exponent b exists, (1, 4, 6) and
that b exists and equals 1 under the triangle condition. (3, 4) It has also been
proved (13, 17) that the exponent n exists and equals 1/2, and the Gaussian
scaling limit

lim
t ‘.

1
qt(lc)

C
x
flc (x, t) e ik · x/`t=e−A |k|

2
, for some A > 0,

holds for the nearest-neighbor OP with d ± 4 and for the spread-out OP
with d > 4 and L ± 1. These results are associated with super-Brownian
motion (ref. 14 and references therein).
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4. MAIN RESULTS

Except for the above cases, there is still no proof of existence of the
critical exponents. Assuming their existence and establishing the following
theorem, we in this paper prove the hyperscaling inequalities (4.3) and (4.4).

Theorem 4.1.

1. Let T=qy(l) ln y(l) with q ¥ (d+1,.) and t=y(l) r with r ¥
(0, 1

d+1). Then there exists l0 < lc such that

q(l) [ 4 F
T

t
ds{4ts(lc)+1}d hs/2(lc)2, -l ¥ (l0, lc). (4.1)

2. For every l > lc,

ht(lc) [ 2 h(l), -t \ y(l) ln
1
h(l)

. (4.2)

Corollary 4.2. Assuming existence of the critical exponents in (3.4)
and (3.6)–(3.9), we have

(dn−2r+1) z \ c, (4.3)

(dn+1) z̄ \ c+2b, (4.4)

where z̄=zKzŒ.

We obtain d \ 4 by substituting the MF values to the above inequali-
ties. This means that the MF exponents cannot be observed when d < 4.
Together with the results of refs. 16 and 18, this implies that the value of
the upper critical dimension dc is 4.

The proof of the above theorem is based on argument similar to that
in refs. 19 and 204 where a set of hyperscaling inequalities for d-dimen-

4 Tasaki (19) discussed a class of random cluster models which includes not only unoriented
percolation but also some stochastic cluster growth models. We note that CP and OP are
different from the cluster growth models; the susceptibility for the growth models, which
corresponds to limt ‘. qt(l) in this paper, diverges in any dimension as the control parameter
tends to its critical point. In contrast, it has been proved (13, 17) that qt(lc) is bounded uni-
formly in t for the nearest-neighbor OP with d ± 4 and for the spread-out OP with d > 4
and L ± 1.

sional unoriented percolation has been proved by assuming existence of its
critical exponents; other hyperscaling inequalities have also been derived in
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refs. 7 and 8. Their results, together with the results of ref. 11, imply dc=6
for unoriented percolation. Borgs et al. (7) have also proved a sufficient
condition for a set of hyperscaling equalities (see Remark in the next
section).

5. PROOFS

We here prove Theorem 4.1 and then Corollary 4.2. First we prove the
inequality (4.1) by assuming the following three lemmas, whose proofs are
given after proving Corollary 4.2.

Lemma 5.1. Let T=qy(l) ln y(l) with q ¥ (d+1,.) and t=y(l) r

with r ¥ (0, 1
d+1). Then there exists l0 < lc such that

q(l) [ 3Il(t, T), -l ¥ (l0, lc), (5.1)

where Il(t, T)=>Tt ds qs(l).

Lemma 5.2.

fl(x, t) [ ht/2(l)2, -l \ 0, -(x, t) ¥ Zd×R+. (5.2)

Lemma 5.3. For any l [ lc, there exists C <. such that

e−t/y(l) [ qt(l) [ C (t+1)d e−t/y(l), -t \ 0. (5.3)

The reversed inequality of (5.1), q(l) \ Il(t, T), is trivial. Therefore
Lemma 5.1 implies that Il(t, T) approximates q(l) by taking l to be close
to lc according to the integral region [t, T]. The inequality (5.3) is used to
prove Lemma 5.1. It also indicates that y(l) diverges as l ‘ lc together with
the fact that q(l) diverges as l ‘ lc as in (3.3).

Proof of Theorem 4.1. First we prove (4.1). By the definition of
tt(l),

tt(l)2 \
1
qt(l)

C
x: |x| \ R

|x|2 fl(x, t) \
R2

qt(l)
C

x: |x| \ R
fl(x, t),

holds for any R \ 0. We substitute R=2 tt(l) to obtain

3
4
qt(l) [ C

x: |x| [ 2tt(l)
fl(x, t). (5.4)
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Applying Lemma 5.1, the monotonicity of qt(l) in l, the above inequality
(5.4), and then Lemma 5.2, we obtain the inequality (4.1).

Next we prove (4.2). By the definition (3.1),

ht(l)=h(l)+Gt(l) [ h(l)+e−t/y(l), -t \ 0. (5.5)

Let l > lc so that h(l) > 0 and y(l) <.. The right side of (5.5) is bounded
by 2 h(l) when t \ y(l) ln 1

h(l). Together with the monotonicity of ht(l) in l,
we obtain the inequality (4.2). This completes the proof of Theorem 4.1. L

Proof of Corollary 4.2. First we derive the hyperscaling inequality
(4.3) by using the inequality (4.1) and assuming existence of the exponents
c, z, r and n.

We take l to be close to lc so that t in (4.1) is large and thus the
integrand in (4.1) is bounded by sdn−2r multiplied by some slowly varying
function. We note that the exponent dn−2r must be greater than −1
because of the fact that q(l) diverges as l ‘ lc as in (3.3). Therefore the
right side of (4.1) is bounded by y(l)dn−2r+1 multiplied by some slowly
varying function. Together with the assumed behavior of q(l) in (3.4) and
that of y(l) in (3.6), we obtain the inequality (4.3).

Although the inequality (4.3) involves only the critical exponents for
l [ lc, the other hyperscaling inequality (4.4) involves zŒ and b as well. The
inequality (4.4) follows from the scaling inequality5 rzŒ \ b by substituting

5 When d=1, it has been proved (ref. 9, p. 73) that t1/2ht(lc) diverges as t ‘.. This means
r [ 1/2 for d=1 if the exponent r exists. The numerical values of r and b for d=1, 0.161
and 0.277 respectively, have also been mentioned in ref. 9.

it to (4.3). We prove this scaling inequality by using the inequality (4.2) and
assuming existence of the exponents zŒ, b and r.

Let lt=inf{l > lc : y(l) ln 1
h(l) [ t}. Then the inequality (4.2) holds at

l=lt, and (lt−lc)−zŒ % t, which follows from y(lt) ln 1
h(lt)

=t, holds under
the assumed behavior of y(l) in (3.6) and that of h(l) in (3.7). Taking t to
be large so that

ht(lc) % t−r % (lt−lc)rzŒ, h(lt) % (lt−lc)b,

and substituting them to the inequality (4.2), we obtain rzŒ \ b. This
completes the proof of Corollary 4.2. L

Remark. Because of the inequality (5.2), we cannot derive the corre-
sponding equality to (4.3). For unoriented percolation, an analogous
inequality to (5.2) holds and thus its hyperscaling inequality can be deri-
ved. (7, 20) Borgs et al. (7) have proved for d-dimensional unoriented percolation
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that an inequality, which is a sort of reversed version of (5.2) and is
expected to hold only when d < dc, holds and thus the hyperscaling
equality holds if the expected number of disjoint easy-way crossings in the
box [0, L]×[0, 3L]d−1 is bounded uniformly in L. We expect that a
similar situation occurs in CP and OP as well, which would help explain
why the inequality (5.2) can be reversed in low dimensions.

Proof of Lemma 5.3. First we prove that for any l \ 0 there exists
C <. such that

ht(l) [ qt(l) [ C(t+1)d ht(l), -t \ 0, (5.6)

which is trivial for OP. We define Plt (n) to be the probability that the
number of sites in Ct equals n. It has been proved (ref. 15, p. 42) that for
any l \ 0 there exists C <. such that

C
n \ 1

nk Plt (n) [ Ck(t+1)kd, -k \ 1, -t \ 0.

Together with the Hölder inequality, we have for any k \ 1

qt(l)= C
n \ 1

n Plt (n) [ 3 C
n \ 1

nkPlt (n)4
1/k 3 C

n \ 1
Plt (n)4

1−1/k

[ C(t+1)d ht(l)1−1/k.

The inequality (5.6) is obtained by taking k ‘..
By the sub-multiplicative property qs+t(l) [ qs(l) qt(l), there exists

s(l) \ 1 such that

e−1/s(l)=lim
t ‘.
qt(l)1/t=inf

t > 0
qt(l)1/t. (5.7)

The inequality (5.6) indicates that s(l) is equivalent to the relaxation time
y(l) when l [ lc. We thus obtain (5.3) by using (3.2), (5.6) and (5.7). The
proof is completed. L

Proof of Lemma 5.1. By the inequality (5.3),

Il(0, t) [ C(t+1)d+1, Il(T,.) [ Ce F
.

T+1
ds sde−s/y(l),

Il(t, T) \ y(l){e−t/y(l)−e−T/y(l)}.

Since t=y(l) r with r ¥ (0, 1
d+1), the inequality Il(0, t) [ Il(t, T) holds when

y(l) is sufficiently large.
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To estimate Il(T,.), we define f(s) as e−f(s) s/y(l)=sde−s/y(l); we note
that f(s) is increasing in s > e. We substitute T=qy(l) ln y(l) in f(T) to
obtain

f(T)=
q−d

q
−

d
q

ln ln y(l)+ln q
ln y(l)

.

Since q > d+1, f(T) is positive when y(l) is sufficiently large. Now we can
bound Il(T,.) by

Ce F
.

T
ds e−sf(T)/y(l)=

Cey(l)1−qf(T)

f(T)
.

Again by the condition q > d+1, 1−qf(T) is negative when y(l) is suffi-
ciently large and thus Il(T,.) is small. This completes the proof of
Lemma 5.1. L

Proof of Lemma 5.2. By the Markov property,

Pl((o, 0) Q (x, t))=Pl(,y ¥ Zd, (o, 0) Q (y, t/2) Q (x, t))

[ Pl(,y, z ¥ Zd, (o, 0) Q (y, t/2), (z, t/2) Q (x, t))

=ht/2(l) Pl(,z ¥ Zd, (z, t/2) Q (x, t)).

Reversing the directions of the temporal axis and of the bonds used in the
graphical representation, and then using the symmetry of the Poisson
process, we obtain

Pl(,z ¥ Zd, (z, t/2) Q (x, t))=ht/2(l).

This completes the proof of Lemma 5.2. L
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